CONTENTS

4 Message from the Chairperson
Alison Hales

5 Love is in the Air!
Lovebirds: WPT research will help protect
the smallest of Africa’s parrots

9 A Feast for the Senses
Different ways to enrich parrots’ lives

12 The Curious Sex Lives
of Vasa Parrots

14 Spotlight: Zoo Conservation Partner
Woburn Safari Park

15 Parrot Senses, Part 2
How psittacines connect with their surroundings

18 The Littlest Psittacines:
Pygmy Parrots

22 PsittaNews
Parrot News and Updates
WPT Contacts
PsittaScene 2020 Index

24 Parrots in the Wild
Bourke’s Parakeet

ON THE COVER
Photo © Konrad Wothe

A Vasa Parrot (Coracopsis vasa drouhardi) takes
in its surroundings from a coral tree. Found on
Madagascar and nearby Comoro Islands, these birds
are remarkable in many ways, especially when it
comes to breeding.

See the article: The Curious Sex Lives of Vasa Parrots,
Page 12.
Parrots continue to amaze me, whatever you know there is always so much more to understand about this diverse and complex family of birds. I have been lucky to hear three of our contributors to this issue of *PsittaScene* talk about their specialist subjects, Sacha Düker, Mehd Halaouate and Graham Martin. I hope you will be inspired by their knowledge and enthusiasm.

A sad situation that stayed with me in Sacha’s work with lovebirds, is that escaped and introduced birds are creating hybrids putting the true species at risk. In a break from fighting the trade in Indonesia’s wild parrots, Mehd shared his photos of exquisite parrots from far-flung locations including the tiny jewel-bright pygmy parrots which he writes about here. Professor Martin brought us the fascinating science of parrot senses. I learned that they can only just focus on what is right in front of their beaks but the sensitive ‘bill tip organ’ helps them to interrogate their food – vision and touch work together. So much going on, no wonder they need plenty of enriching sensations to keep them mentally fit.

I’ve been privileged to see a female Vasa Parrot in a large breeding aviary with several males, she in full astonishing colour and voice, commanding her mates to come and feed her. Desi Milpacher gives an understanding of this extraordinary behaviour.

Enjoy!

Love is in the Air!

by Sascha Düker

WPT research will help protect the smallest of Africa’s parrots
It was November and near the end of the dry season, a fact that made this trip possible since during the wet season the ground I was standing on and all the Mopane trees that were surrounding me would be covered in water at least a metre deep. The dry ground made driving through the little off-road paths possible but arduous. Digging the truck out of the dry clay was half the adventure, as vehicles rarely travel the track to the nomadic villagers that live in the area.

We first accessed this area from a paved road in our big Toyota 4WD, which was very useful to have as we would experience later on. Going deeper into the dry floodplains was accompanied by seeing higher stands of Mopane *Colophospermum mopane*, the trees we were looking out for! Mopane trees serve as habitat for Black-cheeked Lovebirds (*Agapornis nigrigenis*) and Lilian’s Lovebirds (*A. lilianae*).

The former have the smallest distribution of any of the 9 species of lovebirds found in sub-Saharan Africa and Madagascar and were the target species of the trip. These special birds are now categorised as Vulnerable by IUCN and of high conservation concern due to their small distribution and loss of habitat, which was already visible on the way to our first destination.

Large stands of Mopane are being cleared at a high rate for timber and burned down overnight to make charcoal. Bags of charcoal are sold at roadsides, providing a small but important source of income for villagers with few alternatives. The World Parrot Trust (WPT) has been working with Dr. Twongs Gawa for several years to understand the drivers of habitat change in Zambia and how changes to Mopane woodlands are impacting lovebirds. A new project, postponed due to COVID-19 last year, is exploring how the worst effects can be mitigated through nest boxes. Other WPT initiatives have focused on stopping poisoning at water holes.

The deeper we went into the Mopane forest the more nervous I became, listening intently to catch the Black-cheeked Lovebird’s screechy sounds and looking out to see some green small parrots with short tails hurrying through the canopy of the trees. We were passing by one of the small nomadic villages with their impressive looking clay huts with dried-grass roofs when suddenly I heard what I was listening for and we stopped the car. I grabbed my binoculars and scanned the tree that the screeches were coming from.

There they were. I could not believe my eyes. In the middle of the heat of the day, a small flock of around 15 Black-cheeked Lovebirds was perching in an Acacia tree close to the village. They were making the most of the shade the few leaves were providing and fighting with two African Grey Hornbills (*Lophoceros nasutus*) for the shadiest spots to rest from the midday sun.

Unbelievably we had managed to find them before even reaching our destination. We stopped for about half an hour to observe their behaviour and take data, but of course also to get some good pictures. Then we had to carry on since we still had some kilometres to cover before the end of the day.

We did not drive 500 metres further and one of the tyres burst, the victim of intense heat and an unavoidable small tree stump sticking out from the ground. Changing the tyres at around 40°C surrounded by the whistles of African Yellow White-eyes (*Zosterops senegalensis*) and hornbills was quite a new experience. Moving on we were accompanied by more sightings of Black-cheeked Lovebirds but also encountered other wildlife like elephants, zebras, giraffes, and a group of approximately 20 African wild dogs. What an amazing dream!

The purpose of this field work was to collect blood samples of Black-cheeked Lovebirds for genetic analysis back in the lab. These data will help us understand the relationships between different populations, their conservation importance and how to responsibly manage collections in captivity. All of this is vital information for underpinning future conservation work for lovebirds across the region.

Wow! There I was standing in the middle of floodplains surrounding the Zambezi river in Zambia, a continental southern African country nurtured by the yearly flooding of this species-rich and diverse river system. The Mosi-oa-Tunya falls (Victoria falls) were not far and could almost be heard with their masses of water streaming down.
Enrichment can come in many forms, all of which can be beneficial to the life of your bird by encouraging natural behaviour and engaging problem-solving skills.

A Feast for the Senses: Different Ways to Enrich Parrots’ Lives

Enrichment should be a part of your daily routine in parrot care as it can prevent your companion from becoming bored and possibly harming themselves or their surroundings. In part one of this article, we will explore three different types of sensory enrichment (visual, auditory and olfactory) and why they are beneficial for your parrot.
Visual
Research has shown parrots to have advanced colour vision, so their toys should reflect this. Many birds will choose to play with a brightly coloured toy instead of a natural wood one. There are many different safe dyes on the market that you can use to stain your birds’ toys a more vibrant colour. I have made many toys for my birds and always found it interesting to watch and see which colour block a bird chews first. Some birds will chew a specific colour block all the way through before choosing another colour.

Sometimes something as simple as your bird’s cage placement can be the most enriching. Some birds love to spend time when in the cage watching out the window. I know my own parrot used to love watching my pet rabbits running around in the garden, becoming quite excited at times and vocalising at them when they got close to the window. To change things up, I would wheel her cage to a different window and watch the traffic/people passing my garden. I always made a point of exposing only a third of her cage in the window, so if she wanted she had the option of staying out of view, but you could guarantee she would be there watching everything.

Finally, there are several bird DVDs on the market showing birds performing natural behaviours for your bird to watch. Watching and hearing another bird bathing can encourage your bird to bathe in its water bowl.

Auditory
There have been many different studies done showing the benefits of auditory enrichment with companion birds. In the wild it is rarely quiet so some low background noise for your bird can be very calming. Many caregivers will leave a radio on for their birds to sing and dance along to. It is amazing to see how birds react to different types of music. My own bird, a Timneh called Mojo, absolutely loved anything by Barry White. I played Mojo a lot of different music over the years, but nothing got the same reaction as a Barry White track.

There are several different enrichment CDs on the market to choose from with hours of different bird and rainforest sounds. Many birds respond in a favourable manner and many join in. Or, if it is safe to do so, you could simply open the window so you bird can hear outside noises.

At the Park we often see our male Palm Cockatoo drumming on a perch with a big stick as part of his breeding behaviour. Companion birds can also drum with suitably-sized foot toys to make a noise. Parrots likewise love to drop items into metal bowls to hear the sound.

Olfactory
There have been many different studies done on birds and how well they can smell. According to Professor Graham Martin, BSc, PhD, DSc of The University of Birmingham, UK: “It is now becoming clear that smell is used by a wide range of birds for mediating social interactions, species recognition, and finding potentially rich foraging areas... it seems likely that the sense of smell plays an important role in parrots.”

When thinking about how parrots use their sense of smell I am reminded of how Kākā have been seen responding to different scented materials. And at the Park we are in the process of a study where garlic is rubbed onto boxes to see if parrots could identify the box by its smell alone (results are pending).

At home, I have often offered freshly cut rosemary to my daughter’s budgies. While ‘Goldfish’ simply nibbled at a few leaves, ‘Potato’ went and rubbed himself all over the herb, so I am assuming he preferred the smell as he wanted it all over his feathers.

Bearing this in mind I have been keen to try different smells out on the parrots at the Park to see if and how they react. We grow many herbs at the park that we can cut and give to the birds fresh on a regular basis. These include basil, parsley, mint, thyme and coriander, to name a few.

In the next issue of PsittaScene (Summer 2021) I’ll explore how to stimulate parrots’ other senses: touch and taste.
The curious sex lives of vasa parrots

As it turns out, there are wide variations in the ways organisms mate (or not) and have young as well. Where breeding is concerned, in the world of parrots the majority of species are loyal to one chosen mate, an arrangement known as monogamy. These birds spend many hours with each other in the wild flying, feeding, preening each other and strengthening their bond.

However, alternative mating arrangements (or systems) also exist in parrots in cases where allegiance to just one partner isn’t a good option for a variety of reasons; polygamy (males mating with multiple females) and polyandry (multiple males mating with one female) are examples. Polygynous and polyandrous parrot species include Golden Conures (Guaruba guarouba), Kea (Nestor notabilis), and Eclectus species. Birds using these more specialised systems have one goal: produce as many offspring as possible that hopefully survive to adulthood, and do it however you can.

While land-locked parrots mainly live with one mate in their lives, resource restrictions and competition have seen some that are more isolated evolve differently. Being restricted to islands that broke off from ancient Africa some 150-165 million years ago has seen to it that Vasa Parrots (Coracopsis vasa) are unique from other psittacines. Of all the parrots in the world, none are quite as fantastic as they are. Both sexes are identically grey-black in colour, and females incubate the eggs for the shortest time of any parrot (around 14 days; most are 23-28). They also have wonderfully weird love lives — these birds are polygynandrous (a more specific offshoot of polyandry), where both males and females mate with multiple partners.

Males mate with and provide food for several different females at the same time through the entire breeding season. Genetic analysis has confirmed this, showing that Vasa Parrot nest-mates are often the offspring of at least three male parents. And in another departure from the norm, the females are the ones that expend the greatest amount of energy in courtship and nest defence as well as in their usual roles of laying and incubating the eggs.

Females are highly territorial during the breeding season, never leaving their chosen area and defending their nest and consorts against other females. By contrast, the males mostly tolerate each other when going in and out of the various females’ domains. Mating can be either short or a long, drawn-out affair (over 30 minutes), with the male’s large cloacal protuberance tipping him and the female together. This bizarre appendage also exists in close relatives Black, Seychelles and Comoro Parrots (C. nigra, C. barklyi and C. siblans), but nowhere else in parrots.

Once the eggs are laid, the incubating female comes off the nest for brief stints and is fed regurgitated fruit by multiple males, and the males simultaneously feed other widely-separated females also incubating eggs, defending the nest or rearing chicks. Research has also revealed something more: females call loudly from high perches—with songs that are unique to each of them—very near the nest and the more a female does it, the more males she attracts to feed her and her chicks.

It all sounds a bit chaotic, but this unusual way of breeding has probably evolved as a means to ensure the survival of this island-bound species, in an environment that has limited resources to begin with and has been negatively altered by human interference. The Vasa Parrot’s oddness may show that Vasa Parrot nest-mates are showing that Vasa Parrot nest-mates are...

Once the female begins feeding chicks she loses the feathers on her head, which then turns a bright yellow-orange. It’s thought that this transformation helps to attract the males with food for her and her young.

The animal kingdom is full of the strange and the wonderful, from organisms that can live in a wide range of conditions to those whose benchmarks for life are so restricted that their existence is tenuous at best. There are arctic and desert dwellers, forest canopy natives and deep ocean denizens, and they all live on the tiny orb we call Earth.
Hearing has been investigated in detail in some parrot species and it seems clear that the hearing range and hearing sensitivity of parrots is much in line with that of other birds. Sound information is probably very important to parrots for social communication and is vital to their everyday activities.

The frequency range of parrot hearing is narrower than our own. It seems that the hearing of all birds sits within the overall envelope of the hearing of young humans. This indicates that whatever sound a parrot can hear, a young human will be able to detect. There are no secret frequency ranges used by parrots for communication.

Basically, most birds, including parrots, can hear sounds within a frequency range of 30 Hz (Hz are cycles per second) and 8 kHz, this compares with the human frequency range of 20 Hz - 20 kHz. In both humans and birds, the maximum sensitivity to sounds occurs in the 1 - 4 kHz range, which is roughly the frequency range of the notes on the upper half of a piano keyboard.

The hearing range of humans narrows as we age; we tend to lose our high frequency hearing. Whether the longer lived parrots also suffer similar hearing losses is not known.

SOUND LOCATION

The ability to locate sounds in both direction and distance (range) is important in determining just how useful sound can be as a mean of communication. After all, it is little use to just hear a sound; you want to know the direction from which it came and how far away the source is. Surprisingly, evidence shows that in most birds, including parrots, these abilities are rather poor, especially compared with ourselves. We can determine, to within a degree or two, the direction of a sound source and we learn to range nearby familiar sounds to within a few metres. Owls are the only group of birds which can match our sound localisation accuracy and they use this ability to locate hidden prey.

In part two of this series (see part 1, Parrot Vision in *PsittaScene Winter 2020*), Professor Graham Martin explores how psittacines comprehend and interact with their surroundings through hearing, smell, magnetoreception and touch.
For most purposes, however, birds do not need to have such high accuracy in either direction or range. This is because they are highly mobile. Birds can move rapidly in the general direction of a sound that they find interesting and home in on it through successive approximations.

Poor sound location in birds is mainly down to physics. Having the ears separated by only a small distance on the sides of the head means that in birds there are only very small differences between sounds arriving at the two ears. It is these differences that are used to determine sound direction. It is our large solid heads, and widely separated ears, that give us the advantage over parrots when trying to locate sounds.

SMELL

The sense of smell is often readily overlooked in birds. We tend to think that birds live in a world of sight and sound while it is the mammals that live in a world of odours. There is increasing evidence, however, that smell plays a key role in the behaviour of many bird species. It is not just the well-studied petrels, Turkey Vultures, and Kiwi in which smell is used by a wide range of birds for mediating social interactions, species recognition, and finding potentially rich foraging areas. This has been demonstrated in some species of passerines and it seems likely that the sense of smell plays an important role in parrots.

Experimental investigations are rather few but one intriguing example comes from a study of Kakāpō in which a bird was shown able to use odour cues to locate hidden food. Whether using smell in this way is part of Kakāpō natural behaviour is not clear, but the fact that they can latch onto and exploit odour cues does suggest that smell is important to these birds, and probably to other parrots.

MAGNETORECEPTION

I have left this sensory ability until last, not because it is unimportant but because we know very little about it. Magnetoreception is the ability to detect aspects of the Earth’s magnetic field. The Earth’s field varies continuously across the globe and is potentially a rich source of information about position and direction. Despite a lot of research showing that birds are among the animal groups that can detect the Earth’s magnetic field, the actual mechanisms involved remain elusive. In birds there may be more than one mechanism providing magnetic information separately on direction and position.

One system may be based in the eyes, the other associated with the nostrils and the nerves that lead from them. Although the sample is small, the range of bird species in which magnetoreception has been shown to exist includes pigeons, chickens, and songbirds, the parrots’ closest relatives. This suggests that magnetoreception may be widely distributed across bird species. It is possible, therefore, that parrots can be counted among the species that can use geomagnetic field information, but experimental evidence is lacking.

However, some parrot species migrate and many range over large areas; to do this they need to know where they are and the direction to where they want to go. Magnetoreception may be one of the sources of information that helps them do this, but some clever investigations will be needed to reveal the secret.

BILL TIP ORGANS

If parrots cannot guide their bill visually with high accuracy (see Vision in Winter 2020 PsittaScene) what information can they use to direct their manipulation of objects? The answer lies in special touch sensitive receptors in the bill tip. As shown in these photographs of a Senegal Parrot (above) the touch receptors are situated within the curved tip of the upper mandible. They are grouped in clusters and are collectively known as the bill tip organ.

The actual touch sensitive receptors are housed in small pits in the keratin of the bill. The clusters of touch receptors are arranged symmetrically in seven pairs situated just inside the edges of the bill. There is a further single cluster of touch receptors at the very bill tip. Bill tip organs give parrots detailed touch information about objects held at their bill tip, allowing them to manipulate and position objects without seeing them. The bill tip organ allows parrots to achieve the intricate manipulation and positioning of a food item before ingesting it. Crucially, it also allows parrots to use their hooked bill tip as their characteristic “third limb” when climbing about.

Touch sensitivity in the bill allows parrots to accurately assess the positions of structures, and probably their surface characteristics, which in turn allows them to confidently rely on their bill as they climb.

ABOUT THE AUTHOR:

Professor Graham Martin, BSc, PhD, DSc of The University of Birmingham, UK is an Ornithologist with an international reputation built upon his research into the sensory worlds of birds. In recent years he has used his expertise to focus on problems concerned with the function vision, especially binocular vision, in foraging behaviour, and in understanding why some bird species are particularly vulnerable to collisions with human artefacts such as wind turbines, power lines and fishing nets. His son is Dr. Rowan Martin, WPT-Africa Programme Director.
When one talks about the largest and smallest parrots on the planet a few species come to mind. As far as large parrots go, the top of the list is the Hyacinth Macaw (*Anodorhynchus hyacinthinus*) from Brazil, Bolivia and Paraguay at up to 100 cm from head to tail. The heaviest parrot is the Kākāpō (*Strigops habroptilus*) from New Zealand, which can weigh up to 4 kg.

A Few Facts About Pygmy Parrots

The pygmy parrots are predominantly green in colour. The head, breast and belly colours, plus their distribution across New Guinea and surrounding islands, are the factors that differentiate between the species and subspecies. For example, and as their name suggests, the Red-breasted Pygmy Parrot is the only species with red breast feathers. It is the same with the Yellow-capped with its splash of gold on top. The Geelvink Pygmy Parrots are restricted to two islands in Geelvink Bay, and so on.

In general, the males are the most brilliantly coloured, and the females and juveniles more drab and inconspicuous. Their green colour and small size makes it difficult to spot these parrots in the forest canopy. The best way to find them is to listen carefully for the very sharp whistling sound they make when actively feeding, watch for falling food debris and to check the trunks of their favourite feeding trees.

The pygmy parrots are some of the very few psittacids that can literally run up, down and on the underside of branches and trunks of trees with ease and confidence. This behaviour is similar to that of the nuthatches and sittellas, two tree-creeper types of birds. They use their disproportionally large feet, long toes and stiffened tail feather tips (similar to woodpeckers) to brace and stabilise themselves against tree trunks.

Pygmy Parrots are some of the very few psittacids that can literally run up, down and on the underside of branches and tree trunks with ease and confidence.

These features help them in their search for food; their diets consist mainly of fungi, lichens, nectar, small berries and insect and insect larvae found in the bark. Recently it was discovered that they consume a small amount of seeds, like those of the Australian Pine (*Casuarina equisetifolia*).

Pygmy parrots’ preferred habitats include lowland, secondary growth and mountain forest, and occasionally coconut groves, savannas and areas around human settlements (especially gardens). They nest and roost in either tree cavities or *arboreal termittaria*, which are termite mounds found in trees. A way of distinguishing between pygmy parrot nests in these mounds and those of other birds such as kingfishers is that the pygmy parrot’s entrance is horizontally oval. Those that belong to kingfishers are round.

The breeding season for most pygmy parrots is between March and October. I have documented a pair of Red-breasted Pygmy Parrots preparing for breeding in September and a pair of Geelvink Pygmy Parrots whose chicks fledged in mid-July.

From talking to local hunters and landowners who have encountered the birds I have learned that most species lay between two and four eggs. Otherwise, their breeding habits remain largely a mystery.

One notable behaviour is that the previous year’s offspring will roost in the same termite mound and feed on the same tree as their parents. Small flocks of up to 25 birds have been recorded running up and down tree trunks occasionally squabbling with each other.

THE LITTLEST PSITTACINES: PYGMY PARROTS

article and photos by Mehd Halaouate

When it comes to the smallest, the pygmy parrots win the prize. They are only about 8.3 to 9 cm in length and weigh no more than 12 g. Their genus name *Micropsitta* is derived from the Greek mikros, which means small and psitta, for parrot. In my travels in Indonesia and Papua I have been fortunate to see four of the six species in this family of parrots often.

Red-breasted Pygmy Parrot

Newly fledged Geelvink Pygmy Parrot chick

Red-breasted Pygmy Parrot nests
Pygmy parrots from the highland and mountains, because of the lack of termite mounds there, nest as most parrot species do in tree cavities. The ones from the lowland forests breed in termite mounds. They are great places to raise a family as the temperature inside remains constant, so the eggs and chicks don't get overheated or chilled. Another benefit is the fact that it is easier for the birds to dig a chamber in it than in a tree trunk. Interestingly, despite their proximity to the insects inside the mound there’s no evidence that the parrots feed on them.

There are a number of threats to these birds. There is some local capture for pets, and forest clearing on Buru and Biak islands is ongoing at an alarming rate. Unfortunately, because it is easy to catch these birds when they are breeding local kids, when they find active nests, catch and play with the birds until they succumb to stress. I started informing the locals and their kids that if they find active nests we will pay them just to show us where they are. I am hoping that this kind of action, although small, will slow or even end the unnecessary captures and deaths. Raising awareness about the uniqueness and the important role every creature plays in our ecosystem is the best survival strategy that we can implement alongside converting trappers to birdwatching guides.

Apart from human threats raptors, hornbills, lizards and snakes also present dangers for these parrots. I have observed in New Guinea that even hornbills, larger kingfishers and the Rufous-bellied Kookaburra (Dacelo gaudichaudii) will often raid the nests of these tiny birds. There are two theories about this, one is that they are evicting the parrots as the kookaburras in particular also nest in termite mounds and two, they are getting a protein-rich meal out of the eggs, chicks or even the adults. Some threats are simply due to general habitat loss and degradation.

Conclusion

There is still a lot to be discovered about these elusive parrots. More research into their ecology, population status and the threats against them is needed for these tiny gems. As an example, some subspecies like the Buru Red-breasted Pygmy Parrot (Micropsitta bruijnii buruensis) — first described by colleague Thomas Arndt in the late 1990s — are not well known.

These birds are probably in danger from rapid deforestation occurring on Buru, so more studies are needed to better understand their status in the wild. I will not be surprised at all if, in the midst of exploring these threats, we discover new populations or even new species of pygmy parrots in the future, because there are vast areas of New Guinea that are still unexplored.

A QUICK PRIMER ON

RED-BREASTED Pygmy Parrot

Micropsitta bruijnii - 5 subspecies

Range: Buru and Seram Islands in Maluku, Highlands of New Guinea, New Britain, New Ireland, Bougainville, Gulf Province, and Kolombangara in the Solomon Islands.

Wild Status: IUCN Least Concern, CITES Appendix II.

Threats: Subspecies buruensis likely threatened by rapid forest clearance.

YELLOW-CAPPED Pygmy Parrot

Micropsitta keviniana - 3 subspecies

Range: Aro and Kai Islands in Indonesia, South New Guinea, in the Vogelkop and Onin peninsulas.

Wild Status: IUCN Least Concern, CITES Appendix II.

Threats: Unknown.

GEELVINK Pygmy Parrot

Micropsitta geelvinkiana - 2 subspecies

Range: Biak and Numfor Islands in the Geelvink Bay, Papua.

Wild Status: IUCN Least Concern, CITES Appendix II.

Threats: At risk from loss of lowland forest.

BUFF-FACED Pygmy Parrot

Micropsitta pusio - 4 subspecies

Range: New Guinea and New Britain.

Wild Status: IUCN Least Concern, CITES Appendix II.

Threats: Some threat from capture as pets.

MEEK’S Pygmy Parrot

Micropsitta meeki - 2 subspecies

Range: Admiralty Islands, Mussau and Emira island in the Bismarck Archipelago.

Wild Status: IUCN Least Concern, CITES Appendix II.

Threats: Unknown.

FINSCH’S Pygmy Parrot

Micropsitta finchii - 5 subspecies

Range: Eastern islands of Papua New Guinea, the Bismarck Archipelago and in the Solomon Islands.

Wild Status: IUCN Least Concern, CITES Appendix II.

Threats: Threatened by habitat loss and degradation.
PsittaScene

2020 Index

32.1 SPRING

- Kiwa Centre Welcomes Greys
- Freedom: Confiscated parrots go back to the wild on Morotai
- Macaw Mountain: Scarlet Macaw conservation in Honduras hits its stride
- Two Sides: A Lab Biologist Goes Wild
- Murphy Green: Cancer in a Solomon Island Eclectus
- Parrots in the Wild: Cactus Conure

32.2 SUMMER

- Spotlight on Puerto Rico: Hurricane Maria and the Amazons at Rio Abajo
- Survivors of the Storm
- A Test of Will: The effects of Hurricane Maria on the Puerto Rican Amazon
- The Sounds and Sights of Costa Rica
- Cape Parrot: A recovery plan is launched
- Parrots in the Wild: Blue-headed Parrot

32.3 AUTUMN

To Save Wild Great Greens: Ara Marzanillo
New Zealand Parrot Trust: Supporting conservation of the rarest parrots in the South Pacific
Grey Parrots: New research paves way for protection in West Africa
Pet Pages: Your Feathered Friends’ Feet: Providing the best foot care
Loved... to Extinction?
Parrots in the Wild: Budgerigars

32.4 WINTER

Gone for Good? Maybe not: Mitchell’s Lorikeets found on Bali
Moths and Machine Guns: Monitoring Yellow-Naped Amazons in Central America
Different Shades: Colour Mutations
The Wild Parrots of Biak Island
Parrot Senses: How pittacines connect with their surroundings
Double whammy: conservation problem for the endangered Lear’s Macaw
Parrots in the Wild: Red-winged Parrot

Access Past Issues at: Psittascene.org

English, Dutch, German, Italian, Portuguese, Spanish and Swedish

TRIBUTE: Murphy Green, Brave at Heart

Our 2020 Spring issue featured Murphy Green, a companion Solomon Island Eclectus parrot, that fought a serious cancer in 2019. His case inspired many and showed how advancing veterinary medical technology, a caregiver’s love and sheer Eclecutus determination could bring about a remission.

Sadly, late last year WPT learned that Murphy had lost his battle when the cancer returned. Our hearts go out to his devoted companion Carol Frank; he will be missed.

CORRECTION NOTICE: Hazel’s Horrible Adventure

Please note: the address has been corrected from the link posted in the Winter 2020 edition of Psittascene.

Get your copy on Amazon: tinyurl.com/hazelscha

The World Parrot Trust welcomes Dr. Luis Ortiz-Catedral

We are pleased to welcome Dr. Luis Ortiz-Catedral as our new Director of the WPT’s Oceania Program. Originally from Mexico, he obtained his Bachelor of Science (BS) at the University of Guadalajara and then his Master of Science (MSc) degree and Doctor of Philosophy (PhD) from Massey University in New Zealand. He is a conservation biologist and wildlife manager whose specialty is recovering populations of threatened island vertebrates such as parrots, terrestrial snakes, iguanas and mockingbirds.

Luis has studied wild parrots in New Zealand and Australia for 17 years. His research has contributed to developing a blueprint for Cyanoramphus parakeet translocations in New Zealand, and to a better management of pathogens in wild parrot populations. His new role within the WPT will be to help develop conservation capacity in the Oceania region (encompassing Australasia, Melanesia, Micronesia and Polynesia at a land area of 8,525,989 square kilometres).

Environment department failed to investigate allegations rare Australian birds were exported for profit

An independent review has found that the Australian environment department failed to investigate allegations that endangered and rare Australian birds were being sold in Europe for profit, and instead continued issuing permits to allow more birds to be exported to the secretive German charity Association for the Conservation of Threatened Parrots (ACTP). The investigation was triggered when Guardian Australia reported that hundreds of birds, including endangered species, were exported to the facility reportedly to be used for a zoo exhibition, and that private messages showed that birds were being advertised for sale shortly after.

Read more: tinyurl.com/ma5yut6kf

A study supported by the WPT, the University of Pittsburgh at Johnstown and New Mexico State University’s College of Arts and Sciences has found that in Mexico, Guatemala and the Bay Islands, concluded that fewer than 2,400 birds exist. The alarming results have prompted the authors to petition the International Union for Conservation of Nature (IUCN) to list the species as Critically Endangered, up from Endangered.

Read more: tinyurl.com/ynaresult

Yellow-naped Amazon Survey: Results show a drastic decline

A study supported by the WPT, the University of Pittsburgh at Johnstown and New Mexico State University’s College of Arts and Sciences has found that there are far less Yellow-naped Amazons (Amazona auropalliata) left in the wild than previously thought. A range-wide survey, which encompassed the results of a 2016 count in Costa Rica and Nicaragua and 2018-2019 investigations in Mexico, Guatemala and the Bay Islands, concluded that fewer than 2,400 birds exist. The alarming results have prompted the authors to petition the International Union for Conservation of Nature (IUCN) to list the species as Critically Endangered, up from Endangered.

Read more: tinyurl.com/ynaresult

TRIBUTE: Murphy Green, Brave at Heart

Our 2020 Spring issue featured Murphy Green, a companion Solomon Island Eclectus parrot, that fought a serious cancer in 2019. His case inspired many and showed how advancing veterinary medical technology, a caregiver’s love and sheer Eclecutus determination could bring about a remission.

Sadly, late last year WPT learned that Murphy had lost his battle when the cancer returned. Our hearts go out to his devoted companion Carol Frank; he will be missed.
PARROTS IN THE WILD:
Bourke’s Parakeet
(Neopsephotus bourkii)

An adult Bourke’s Parakeet peeks out of a nest cavity in its native inland Australia. These hardy parrots are nomadic; foraging for food, roosting and breeding in Acacia and Eucalyptus woodland.

© Dan Armbrust [CC by 2.0]